Intermediate Algebra
Skill Builder \# PF - 6B
Factoring Quadratic Trinomials with Leading Coefficient Different from 1
ac - Method: BOTTOMS - UP
A quadratic trinomial with leading coefficient different from 1 looks like

$$
a x^{2}+b x+c
$$

To factor such a trinomial using the bottoms - up method:
a. Find two numbers that multiply to $a c$ and that add up to the middle coefficient b.
b. Divide these two numbers by a.
c. Reduce the resulting fractions.
d. Do bottoms - up.

Examples

1. $10 x^{2}+47 x+42$

Solution:

\Rightarrow Thus, 35 and (12) are the two numbers that multiply to 10.42 and that add up to 47.

Divide 35 and 12 by 10 to get the fractions $\frac{35}{10}$ and $\frac{12}{10}$.
Reduce $\frac{35}{10}$ and $\frac{12}{10}$ to $\frac{7}{2}$ and $\frac{6}{5}$.
The fraction $\frac{7}{2}$ gives the factor $2 x+7$ (the "bottom" 2 became the coefficient of x).
The fraction $\frac{6}{5}$ gives the factor $5 x+6$ (the "bottom" 5 became the coefficient of x).
Thus, the factored form of $10 x^{2}+47 x+42$ is $(2 x+7)(5 x+6)$.
2. $48 x^{2}+2 x-63$

Intermediate Algebra
Skill Builder \# PF - 6B
Factoring Quadratic Trinomials with Leading Coefficient Different from 1
ac - Method: BOTTOMS - UP
Factor the given quadratic trinomial.

1. $15 x^{2}+38 x+24$
2. $24 x^{2}-50 x+25$
3. $32 x^{2}+52 x-45$
4. $35 x^{2}+48 x-27$
5. $40 y^{2}-37 y-63$
6. $16 y^{2}-62 y+55$
7. $33 t^{2}+67 t-56$
8. $96 t^{2}+116 t-65$

Intermediate Algebra
Skill Builder \# PF - 6B
Factoring Quadratic Trinomials with Leading Coefficient Different from 1
ac - Method: BOTTOMS - UP
Answers

1. $(3 x+4)(5 x+6)$
2. $(4 x-5)(6 x-5)$
3. $(8 x-5)(4 x+9)$
4. $(7 x-3)(5 x+9)$
5. $(8 y+7)(5 y-9)$
6. $(2 y-5)(8 y-11)$
7. $(3 t+8)(11 t-7)$
8. $(12 t-5)(8 t+13)$

Prepared by: Dr. Teresa V. Sutcliffe, Winter 2010

