Chapter 21 The Endocrine System: Regulation of Energy Metabolism and Growth

- **Chapter Outline**
 - An Overview of Whole-Body Metabolism
 - Energy Intake, Utilization, and Storage
 - Energy Balance
 - Energy Metabolism During the Absorptive And Postabsorptive States
 - Regulation of Absorptive and Postabsorptive Metabolism
 - Thermoregulation
 - Hormonal Regulation of Growth
 - Thyroid Hormones
 - Glucocorticoids

21.1 Overview of Whole-Body Metabolism

- Catabolism = Breakdown large molecules to small molecules
- Anabolism = Small molecules used in generating energy and in synthesis of large molecules

21.2 Energy Intake, Utilization, and Storage

- Following intake, nutrients can be
 - Catabolized for energy
 - Used as substrates for new molecules synthesized in cells
 - Stored for energy (glycogen and fat)
- **Preferred Energy Substrates**
 - Brain: ______________
 - Resting skeleton muscle and liver: ______________
 - Heart: ______________

21.3 Energy Balance

- **Energy Balance**
 - Energy input = energy output
 - Energy input = energy content of consumed nutrients
 - Energy output = Heat (60%) + Work (40%)
- **Positive balance**
 - Energy intake > energy output
 - Store excess energy
- **Negative balance**
 - Energy intake < energy output
 - Consume stored energy
- **Energy balance is regulated by endocrine system**
- **Metabolic Rate** is the energy expended per unit time
 - Increases with increases in activity
 -Varies among genders, age, body surface, stress and environmental temperature
- **Basal Metabolic Rate**
Basal metabolic rate (BMR) = rate of energy expenditure of a person awake, resting, lying down, and fasted for 12 hours
- Represents minimum energy expenditure necessary to maintain body functions
- Depends on age, sex, body surface area, activity level, stress and thyroid hormone levels
- Hyperthyroids have high BMR
- Hypothyroids have low BMR

21.4 Energy Metabolism during the Absorptive and Postabsorptive States
- **Absorptive State**: 3–4 hours following meal
 - Nutrients in bloodstream plentiful from absorption
- **Postabsorptive State**: Between meals
 - Break down and mobilize stored energy
- **Energy Metabolism during Absorptive State**
 - Positive energy balance
 - Glucose = primary energy source for cell
 - Primarily anabolic
 - Excess nutrients taken up will be stored
 - Absorptive State Reactions (Figure 21.3)
- **Energy Metabolism during Postabsorptive State**
 - Negative energy balance
 - Glucose spared for nervous system
 - Other tissues use fatty acids or other sources for energy
 - Primarily catabolic state: stored nutrients broken down and mobilized
 - Postabsorptive State Reactions (Figure 21.4)

21.5 Regulation of Absorptive and Postabsorptive Metabolism
- **Hormonal regulation**
- **_________** = hormone of absorptive state
- Glucagon = hormone of postabsorptive state
- Other less important regulators
 - Epinephrine
 - Sympathetic nervous system
 - Glucocorticoids (under stress)
- **Insulin**
 - Signals related to feeding and absorption of nutrients stimulate its secretion
 - Promote absorptive state
 - Anabolic hormone
 - Promotes synthesis of energy storage molecules such as glycogen and triglycerides
 - Promotes glucose use for energy
 - Increase glucose uptake by cells
 - Decreases catabolism
- **Actions of Insulin (Figure 21.5)**
 - **Glucagon**
 - Catabolic hormone
 - Promotes breakdown of energy storage molecules (glycogenolysis and lipolysis)
 - Promotes glucose sparing for nervous system by diverting body cells to utilizing other sources of energy
 - Gluconeogenesis (-neo = new)
 - Promote postabsorptive state
 - **Actions of Glucagon (Figure 21.7)**
 - **Negative Feedback Regulation of Blood Glucose Levels**
 - Blood glucose levels are maintained primarily by actions of insulin and glucagon
 - Normal blood glucose = 70–100 mg/dL
 - Hyperglycemia = glucose > 140 mg/dL
 - Hypoglycemia = glucose < 60 mg/dL
 - **Glucose Regulation via Insulin (Figure 21.8 a)**
 - **Actions of Glucose on Insulin Secretion (Figure 21.6)**
 - **Glucose Regulation via Glucagon (Figure 21.8 b)**
 - **Diabetes Mellitus**
 - Characterized by chronic high blood glucose levels (hyperglycemia)
 - Type I (insulin dependent diabetes mellitus or IDDM) is due to insufficient insulin secretion
 - Type II (insulin independent diabetes mellitus or NIDDM) is due to lack of effect of insulin
 - **Effects of Epinephrine and Sympathetic Nervous Activity**
 - Indirectly promote postabsorptive state
 - Directly affect body metabolism such as fight-or-flight responses.

21.6 Thermoregulation
- Temperature balance
- Mechanisms of heat transfer
- Regulation of body temperature
- Fever
- **Temperature Balance**
 - Core body temperature
 - Humans: 37° C (98.6° F)
 - Hypothermia = decrease in body temperature (below 95 F or 35 C).
 - Hyperthermia = increase in body temperature
 - Above 41° C is dangerous
 - Above 43° C is deadly
- **Heat Transfer Mechanisms**
 - Radiation—thermal energy through electromagnetic waves
 - Conduction—thermal energy through contact
o Evaporation: Insensible water loss and sweating
o Convection—heat transfer by movement of fluid or air

Regulation of Body Temperature

o Receptors = thermoreceptors
 - Central: found in CNS (hypothalamus)
 - Peripheral: found in PNS (mainly skin)

o Effectors: Sweat glands, muscles skeletal muscles smooth muscle of cutaneous blood vessels

o Integrating center
 - Thermoregulatory center in hypothalamus

o Signals
 - Nerve impulses via neurons
 - Chemicals mainly via hormones

Events of Thermoregulation (Figure 21.10)

Heat Generation: Cold Environment

o Below thermoneutral zone (<25°)
 - Vasoconstriction alone cannot maintain proper core body temperature

o Heat-generating mechanisms
 - Shivering thermogenesis
 - Nonshivering thermogenesis

Fever

o Rise in core body temperature
o Accompanies infection
o White blood cells secrete pyrogens
o Body temperature set point increases
o Fever enhances immune responses

21.7 Hormonal Regulation of Growth

Body growth usually refers to the increase of height.

Processes of Growth

o Increase number of cells (hyperplasia)
o Increase size of some cells (hypertrophy)

o Increase bone length and thickness

Human Growth Curve (Figure 21.12)

Body Growth

o During childhood is regulated by hormones such as
 - growth hormone
 - Somatomedins (insulin-like growth factors)

o Genetic make up
o Disease and stress

Actions of Growth Hormone

o Promote growth
o Hypertrophy and hyperplasia
o Lean muscle mass
- Metabolic actions supporting growth
 - Inhibit glucose uptake into adipose tissue and skeletal muscle
 - Stimulate lipolysis and gluconeogenesis
 - Increase uptake of amino acids into cells
 - GH has some direct effects, but most through insulin-like growth factors (IGFs)

- **Somatomedins (Insulin-like Growth Factors: IGFs)**
 - IGFs are peptide molecules
 - GH stimulates IGF release from liver and other cells
 - IGFs have direct effect on target cells as hormone and paracrine

- **Factors Affecting Growth Hormone Secretion**
 - GHRH and GHIH (somatostatin)
 - Factors increasing GHRH release
 - Decreases in glucose or in fatty acids
 - Increases in amino acids
 - Sleep (not well understood)
 - Exercise or stress (response to ↓ glucose and fatty acids)
 - Circadian rhythm (↑ during the night ↓ during the day)

- **Actions of Growth Hormone (Figure 21/13)**

- **Bone Review**
 - Bone = calcium phosphate crystals (hydroxyapatite) osteoid
 - Bone
 - Is an important reservoir for calcium.
 - Decrease in plasma calcium level stimulates the release of calcium from bone
 - Elongates in childhood
 - Can heal and adapt to the life style of a person by increasing or decreasing the strength

- **Cells in Bone (Figure 21.14)**
 - Osteoblasts = bone ____________
 - Osteoclasts = bone breakers (resorption)
 - Osteocytes = bone maintainer
 - Gap junction allows communication between cells and exchange materials

- **Formation of Bone**
 - Osteoblasts lay down osteoid (organic matter)
 - Calcification (depositing of calcium phosphate)
 - Osteoblast becomes immobilized then becomes osteocyte
 - Osteocyte maintains surrounding osteoid

- **Resorption of Bone**
 - Osteoclasts secrete acid and enzymes
 - Acid dissolves calcium phosphate crystals
 - Enzymes degrade osteoid
- Calcium and phosphate released into blood

Bone Growth
- **Increase in width**
 - Osteoblasts lay down new bone on outer surface
 - Companied by resorption of bone in inner surface of cavity by osteoclasts.
 - Minimizes weight gain
- **Increase in length**
 - Osteoblasts lay down new bone at epiphyseal plates

Structure of a Long Bone
- **Epiphyseal Plate**
 - Site of growth in length of bone
 - Epiphyseal plate closure
 - Happens at puberty
 - Affected by sex hormones
 - No further increase in length possible

Long Bone Growth
- Chondrocytes produce new cartilage in epiphyseal plate
- Epiphyseal plate widens causing bone to lengthen
- Chondrocytes die
- Osteoblasts replace chondrocytes and lay down bone
- **Elongation of a Long Bone (Figure 21.16)**

Effects of Abnormal Growth Hormone Secretion
- Dwarfism = Decreased GH secretion in children
- Gigantism = Increased GH secretion in children
- Acromegaly= Increased GH secretion in adults

Other Hormones That Affect Growth
- ________hormones is required for synthesis of GH and permissive for GH actions
- ________is required for secretion of IGF-1 and is permissive for GH actions
- Sex Hormones
 - Little role in childhood growth
 - Important for pubertal growth spurt
 - Actively promote growth during puberty
- Glucocorticoids: Inhibit growth

21.8 Thyroid Hormones
- Synthesis and secretion of thyroid hormones

Thyroglobulin in Thyroid Hormone Synthesis
- Thyroglobulin = protein
- Precursor for thyroid hormones
- Contains tyrosine residues
- Located in colloid

Iodide in Thyroid Hormone Synthesis
• Iodide = I− = ionized form of iodine
• Actively transported from blood into colloid
• Added to thyroglobulin to form thyroid hormones

• Synthesis and Secretion of Thyroid Hormones (Figure 21.17)

• Thyroid Hormones
 • ____ (also called thyroxine): Most abundant form produced and less active.
 ▪ Provides long loop negative feedback
 • T3: Not as much made; more active at target tissue
 • Activation at target tissue: T4 converted to T3

• Secretion of Thyroid Hormones (Figure 21.18)

• Actions of Thyroid Hormones
 • Raise BMR and MR
 • Generate heat = calorigenic effect
 • Permissive to growth hormone therefore promote the normal growth and development of body function and the synthesis of beta adrenergic receptors
 • Mobilize energy

• Diseases of the Thyroid
 • Over secrete thyroid hormones = hyperthyroidism
 • Characterized weight loss, heat intolerance, irritability, high BMR
 • People with inadequate T4 & T3 levels are hypothyroidism
 • Have low BMR, weight gain, lethargy, cold intolerance
 • Myxedema = puffy face, hands, feet
 • During fetal development hypothyroidism can cause cretenism (severe mental retardation)

21.9 Glucocorticoids and Actions

• Glucocorticoids
 • Are steroids secreted by the adrenal cortex
 • Mobilize energy during post-absorptive stage
 • Are also required for growth hormone secretion in synergy with thyroid hormone
 • Reduce inflammation at high concentration
 • Are important in body’s response to stress

• Role of Cortisol in Stress Response
 • Cortisol = hormone of stress
 • Mobilizes energy stores
 • Suppresses immune response

• Secretion of Cortisol (Figure 21.19)

• General Adaptation Syndrome
 • Stereotypical response to stress: Increase the followings: cortisol secretion; sympathetic activity epinephrine secretion ADH release; angiotensin II production
 • Response—fight or flight: Mobilize energy stores and maintain blood pressure

• Effects of Abnormal Glucocorticoid Secretion
- Cushing’s syndrome: hypersecretion of cortisol; hyperglycemia and protein depletion → wasting away of tissue
- Addison’s disease: hyposecretion of cortisol; hypoglycemia; poor tolerance for stress
- Cause usually affects aldosterone as well: excess sodium retention and potassium secretion causes arrhythmias