Chapter 10 The Nervous System: Sensory Systems (I)

General Principles of Sensory Physiology
- The Somatosensory System
- Vision

10.1 General Principles of Sensory Physiology
- Afferent nervous system signals are from
 - External environment: Sensory
 - Internal environment: Visceral afferent
- Perception
 - Is conscious interpretation of external world based on the sensory system, memory and other neural processes
 - Duck or rabbit?
- Somatosensory System
 - Perception of
 - Somatic (body, skin)
 - Proprioception (body position)
- Special Sensory System
 - The perception of
 - Vision
 - Hearing and equilibrium
 - Taste
 - Smell
- Receptor Physiology
 - Sensory receptors are specialized neural structures that detect a stimulus.
 - Receptor properties
 - Specificity: The law of specific nerve energy (Table 10.1)
 - Adaptation
- The sensory stimulus contains an energy form called modality
 - Law of specific nerve energies: Receptors show specificity to one modality
 - Adequate stimulus: Modality for which a receptor is specific and is the most sensitive
- Two Sensory Receptor Structure and Function Forms Figure 10.2.
 - Receptor is a specialized afferent neuron ending.
 - Receptor is a separate cell that communicates with an afferent neuron via chemical synapses.
- Sensory Receptor Function: Sensory transduction
 - Sensory receptors detect stimuli and convert the energy of the stimulus into receptor potential or generator potential in a process called _______ ________
- Receptor Potentials
 - Receptor potentials are graded potentials generated in response to a stimulus acting on a sensory receptor
• A stimulus alters the receptor’s membrane permeability by opening and closing ion channels

• **Sensory Adaptation**
 - Sensory adaptation is the decrease in amplitude of receptor potential over time in presence of a constant stimulus
 - Corresponding decrease in frequency of action potentials
 - Types:
 - Slow adapting or tonic receptors
 - Rapidly adapting or phasic receptors

• **Slow Versus Fast Adaptation (Figure 10.3)**
 - The receptor potential reduces its strength to base line during the duration of the stimulus in _________ (fast/slow) adaption.
 - Slow adapting examples:__________________________, _____________________ and ________
 - Fast adapting example:____________________________

• **Sensory Pathways**
 - The particular neural pathway that transmits sensory information from receptors to the central nervous system pertaining to a particular modality also called **labeled lines**
 - Each sensory modality has a specific neural pathway which leads to a particular region of cerebral cortex for interpretation.

• **Generalized Sensory Pathway**
 - **First-order** neuron (afferent neuron) transmits information from PNS to CNS.
 - **Second-order** neuron is an interneuron that relays information to the thalamus
 - **Third-order** neuron passes information to cerebral cortex for sensory perception

• **Neural Interpretation: Cortical Sensory Areas (Figure 10.4)**

• **Sensory Unit (Figure 10.5)**
 - A sensory unit is a single afferent neuron, plus all receptors associated with it.

• **Receptive Field (Figure 10.5)**
 - A receptive field is the area in which an adequate stimulus can generate a response (either excitatory or inhibitory).
 - It is inversely with density of receptors

• **Sensory Coding**
 - Stimulus type
 - Stimulus intensity
 - Stimulus location

• **Stimulus Type Coding**
 - ____________: law of specific nerve energies
 - ____________: Brain integrates information from different sensory system for perception such as wet skin (thermoreceptors and touch receptor)

• **Stimulus Intensity Coding**
 - ____________ coding of action potentials
• **Stimulus Intensity Frequency Coding**
 o After reaching the threshold, the stronger stimuli will produce a higher __________ of action potentials
 o Which has stronger intensity (Figure 10.7)? A or B

• **Stimulus Intensity Population Coding (Recruitment) (Figure 10.8)**
 o Stronger stimulus activates more receptors (recruitment) in a ________ ___________ unit
 o Receptors in _____________ sensory units recruitment

• **Stimulus Location Coding**
 o Location coding is based on receptive fields in somatic senses and vision
 ▪ Size of __________ __________
 ▪ Degree of __________
 ▪ Lateral ____________
 o Sensory ___________ is the precision with which the location of a stimulus is perceived

• **Localization Acuity**
 o Any stimulus in the overlapped area will activate both neurons.

• **Lateral Inhibition**
 o A stimulus that activates the receptors in the area inhibits activity the nearby area.

• **Two Point Discrimination**
 o Ability to perceive two distinct points on skin
 o Two point discrimination threshold
 ▪ Is the minimum distance that must exist between two points for them to be perceived as separate points
 ▪ Measures tactile acuity
 ▪ Table 10.2 the body region has the greatest acuity: ____________

10.2 The Somatosensory System

• Involves body sensations such as pressure, temperature, pain, and body position

• **Somatosensory Receptors (Table 10.3)**
 o Somesthetic sensations are associated with skin
 o Proprioception is the awareness of body’s position in space
 ▪ Receptors in the muscles, tendons, ligaments, joints and skin

• **Somatosensory Pathways:**
 o The dorsal column-medical lemniscal pathway (Figure 10.15 a) informs the information from __________ and ________ to the CNS.
 o Spinothalamic tract (Figure 10.15 b) transmits information from __________ and ________ to the CNS.

• **Summary of General Sensation**
 o A sensory stimulus alters the membrane permeability to ions in a specific sensory receptor
 o This specific receptor converts the adequate stimulus into receptor potentials
through sensory transduction.
- Receptor potentials may trigger action potentials which are transmitted via a specific sensory pathway to particular region of CNS for interpretation

10.3 Vision
- Vision Overview
 - Light enters the cornea of the eye → pupil → lens → vitreous → retina.
 - Focus is formed on the retina.
 - Light energy is converted into electric signals.
 - The nerve impulse enters the optical nerve and reaches the visual cortex for interpretation.
- The Nature and Behavior of Light Waves
 - Light energy
 - Reflection
 - Refraction
 - Refraction of light in the eye
- Electromagnetic Spectrum (Figure 10.21)
- Reflection
 - Light waves reflect off objects
 - We perceive reflected (some emitted) light
- Refraction (Figure 10.22)
 - Light waves bend as they pass from one medium density to another at an angle other than perpendicular
 - Degree of refraction depends on
 - Differences in densities
 - Angle
- Light Refraction (Figure 10.23)
 - Cornea and lens are curved
 - Refract light as it enters eye
- Light Refraction by Eye (Figure 10.24)
 - Image projected onto retina is ______ ______and ______
- Visual Acuity
 - Visual acuity is sharpness of vision
 - Depends upon resolving power: ability to resolve two closely spaced dots
- Eye Accommodation (Figure 10.26)
 - Increasing lens curvature in order to focus on near objects
 - Greater refractive power of a lens is needed to focus on retina
- Vision of Distant Object
 - No ____________________________ stimulation, little refractive power is needed for distant vision
- Accommodation for Near Vision
 - Under parasympathetic control, ciliary muscle contracts
 - Decreased tension on zonular fibers; lens becomes rounder (refractive index increases)
• Clinical Abnormalities
 o Normal Eye (emmetropia) (Figure 10.27)
Condition	Description
1) Presbyopia	a) Lens or cornea is too round (strong refractive power) for the length of the eyeball, use concave lens to correct
2) Cataract	b) Hardening of lens with ageing, use correction lens
3) Astigmatism	c) Far slightness, focus behind retina while review near object
4) Myopia	d) Decreased transparency of lens due to opacification, use artificial lens
5) Hyperopia	e) Irregularities of the surface of lens or cornea; use correction lens

• Regulating the Amount of Light Entering the Eye
 o Size of pupil regulates the amount of light entering eye
 o Iris consists of two layers of smooth muscle
 ▪ Inner circular muscle—constrictor
 ▪ Outer radial muscle—dilator

• Pupillary Constriction and Dilation (Figure 10.28)
 o Pupillary constriction is caused by the _______________ stimulation of ____________ muscle.
 o Pupillary dilation is caused by the ____________ stimulation of ____________ muscle.

• Anatomy of the Retina (Figure 10.29)

• Cells of the Retina
 o Rods and cones are photoreceptor cells that communicate with bipolar cells
 o Bipolar cells communicate with ganglion cells
 o Axons of ganglion cells form optic nerve
 o Horizontal and amacrine cells provide lateral modulation

• Anatomy and Function of Photoreceptors (Figure 10.31)
 o The conversion of light energy into electrical energy is called ___________________. This is the function of photoreceptors.

• Distribution of Photoreceptors
 o Fovea has the greatest number of cones and no rods.
 o Blind spot: There are no photoreceptors in optic disk

• Photoreceptor Absorbance Spectra
 o Four photopigments
 o Each has retinal and opsin
 o Four different opsins
 ▪ One for the rods (black and white vision, rhodopsin)
 ▪ Three for the cones (color vision): L, S and M

• Components of Rods (Figure 10.32)
• Characteristics of Rods and Cones (Table 10.5)
• **Photo transduction in the Dark (Figure 10.33)**
 - cGMP levels are _____ (high/low)
 - cGMP keeps sodium channels _____ (open/close).
 - Photoreceptor cells are____________________(hyperpolarized/depolarized)

• **Photo transduction in the Light (Figure 10.33)**
 - cGMP levels are _____ (high/low)
 - Sodium channels are _____ (open/close).
 - _____ ions keep moving out
 - Photoreceptors are____________________ (hyperpolarized/depolarized).

• **Light Input to Circadian Rhythms**
 - Many daily rhythms
 - Without light, circadian rhythms would run longer than 24 hours
 - Special photoreceptors contain melanopsin
 - Link to rhythm-generating center of the brain

• **Bleaching of Photoreceptors in Light**
 - Adaptation to light and dark
 - Small changes in light intensity
 - Pupillary dilation and constriction
 - Larger changes in light intensity such as bright light
 - Sensitive rods are overwhelmed
 - Rods begin to be "bleached"

• **Color Adaptation**
 - Stare at next slide
 - Continue staring at same place on screen with the following slide

• **Neural Processing in the Retina**
 - Photoreceptors communicate to bipolar cells, and bipolar cells communicate to ganglion cells
 - Convergence
 - More than one photoreceptor to bipolar neuron
 - More than one bipolar cell to ganglion cell
 - Rods converge more
 - Lower visual acuity
 - Greater sensitivity
 - In fovea
 - One cone communicates with one bipolar cell
 - Greater acuity and sensitivity

• **Bipolar Cell Receptive Fields**
 - Glutamate
 - Stimulatory at ionotropic receptors
 - Inhibitory at metabotropic receptors
 - Direct photoreceptor → bipolar causes response in center receptive field
 - Glutamate released in dark (decreased in light)
 - OFF-bipolar cells excited by glutamate are inhibited by light
• ON bipolar cells inhibited by glutamate are excited by light
 o OFF bipolar cell
 ▪ Excited by light in surround receptive field
 ▪ Due to interaction between photoreceptors, bipolar cells and horizontal cells
 o ON bipolar cell
 ▪ Inhibited by light in surround receptive field
 ▪ More correct terminology: ON-center, OFF-surround and Off-center, ON-surround

• Photoreceptor cells receive light or dark signals and release neurotransmitters (more in the dark) to synapse with bipolar cells
 o Bipolar cells
 ▪ Transmit graded potentials (excitatory or inhibitory)
 ▪ Synapse with ganglion cells
 ▪ Some excitatory or others inhibitory
 o Ganglion cells are first cells in pathway to generate action potentials
 ▪ Axons of ganglion cells = cranial nerve II
 ▪ Convergence of excitation and inhibition gives complex receptive fields

• Receptive Fields of Ganglion Cells
 o Either increase or decrease the frequency of action potentials
 o Bipolar cells transmit graded potentials, not action potentials
 o Receptive field properties of bipolar cells are continuous to ganglion cells
 ▪ ON-center, OFF-surround
 ▪ Off-center, ON-surround
 o Lateral inhibition by amacrine cells
 o Transmit action potentials
 o Disinhibition causes excitation

• Neural Pathways for Vision
 o Right visual field to left cortex; vice versa

• Parallel Processing in the Visual System
 o Parallel pathways transfer different types of visual information by different neurons
 ▪ Color
 ▪ Shape
 ▪ Movement

• How to maintain good eye health
 http://www.webmd.com/eye-health/good-eyesight

• Additional Eye Information:
 o http://www.eyecareamerica.org/